الرئيسية
أقسام المكتبة
المؤلفين
القرآن
البحث 📚
الأمثلة:
مثال التماثل بين المسألتين:
توفي رجل عن امرأة وولد خنثى وعم.
وهذه صورتها:
التوضيح:
انظر إلى المسألتين تجد أصلها من ثمانية مخرج فرض الزوجة وبما أن المسألتين متماثلتان فاكتفينا بإحداهما وجعلت هي الجامعة للمسألتين.
وبما أن الزوجة لم يختلف نصيبها على كلا التقديرين أُعطيت فرضها الثمن كاملاً.
أما الولد الحنثى فيختلف نصيبه:
فبتقدير ذكورته يكون له الباقي بعد فرض الزوجة وهو سبعة.
وبتقدير أنوثته يكون له النصف وهو أربعة.
فأعطي الأقل وهو (4) من الجامعة.
والعم بتقدير ذكورة الخنثى محجوب به.
وبتقدير أنوثة الخنثى يكون له الباقي وهو ثلاثة.
وبما أنه يرث في تقدير دون آخر فلا يُعطى شيئاً.
فكان مجموع المأخوذ من الجامعة خمسة (5).
والباقي ثلاثة (3) موقوف إلى البيان أو الصلح.
فإن بان الخنثى ذكراً أخذ الموقوف وهو ثلاثة (3) ولا شيء للعم.
وإن بان الخثنى أنثى فالموقوف للعم.
مثال آخر في التماثل:
توفيت امرأة عن زوجها وولد أخ خثنى وعم.
وهذه صورتها.
التوضيح:
انظر إلى مسألتين حال ذكورة الخنثى وأنوثته تجد أصلها من اثنين مخرج فرض الزوج النصف.
وبما أن المسألتين متماثلتان فاكتفينا بإحداهما وجعلت هي الجامعة.
وبما أن الزوج لم يختلف نصيبه على كلا التقديرين أعطي فرضه النصف كاملاً وهو (1) من الجامعة.
أما ولد الأخ الخنثى فيختلف نصيبه:
فبتقدير ذكورته يكون له الباقي.
وبتقدير أنوثته لم يكن له شيء لأنها من ذوي الأرحام.
وبما أنه يرث في تقدير دون آخر فلا يُعطى شيئاً إلى البيان أو الصلح.
وكذلك العم لا يُعطى شيئاً.
لأنه بتقدير ذكورة الخنثى يُحجب، وبتقدير أنوثة الخنثى يكون النصف الباقي للعم.
وبما أنه يرث في تقدير دون آخر فلا يُعطى شيئاً إلى البيان أو الصلح.
فإن بان الخنثى ذكراً أخذ الموقوف ولا شيء للعم.
وإن بان الخنثى أنثى أخذ الموقوف العم، ولا شيء للخنثى لأنه من ذوي الأرحام.
مثال التداخل بين المسألتين:
توفى شخص عن أم وبنت وولد خنثى وعم
…
وهذه صورتها:
التوضيح:
المسألة الأولى:
بتقدير ذكوة الخنثى أصلها من ستة وصحت من ثمانية عشر (18).
للأم السدس من مصحح المسألة وهو ثلاثة (3).
وللبنت (5) والخنثى عشرة (10) باعتباره ذكراً.
والعم محجوب بالخنثى باعتباره ذكر.
والمسألة الثاني:
بتقدير أنوثة الخنثى أصلها من ستة:
للأم السدس واحد (1).
وللبنت والخنثى الثلثان أربعة (4) كل منهما اثنان.
وللعم الباقي وهو واحد (1).
ثم نظرنا بين مصحح المسألة الأولى وهي (18) وبين المسألة الثانية وهي ستة (6) فكانتا متداخلتين.
فأخذنا أكبر العددين وهي الثمانية عشر (18) وجعلت هي الجامعة.
ثم قسمنا الجامعة (18) على المسألتين:
ا
لمسألة الأولى:
18 ÷ 18 = وما خرج من القسمة = 1 وهو جزء سهم المسألة الأولى.
المسألة الثانية:
18 ÷ 6 وما خرج من القسمة = 3 وهو جزء سهم المسألة الثانية.
ورقمنا جزء سهم كل من المسألتين فوق مسألته.
ولمعرفة نصيب كل واحد عملنا الآتي:
ضربنا نصيب كل واحد من المسألتين في جزء سهم المسألة، وقارنا بين حاصل الضربين وأعطيناه أقل العددين.
فالأم: لها من المسألة الأولى باعتبار الخنثى ذكراً 3 × 1 = 3.
ولها من المسألة الثانية باعتبار الخنثى أنثى 1 × 3 = 3.
فأعطيت ثلاثة حيث لم يختلف نصيبها في الحالتين.
والبنت: لها من المسألة الأولى باعتبار الخنثى ذكراً 5 × 1 = 5.
ولها من المسألة الثانية باعتبار الخنثى أنثى 2 × 3 = 6.
فأعطيت الأقل وهو (5) ورقمت مقابل اسمها من عمود الجامعة.
والخنثى: له من المسألة الأولى باعتباره ذكراً 10 × 1 = 10.
وله من المسألة الثانية باعتباره أنثى 2 × 3 = 6.
فأعطي أقل النصيبين وهو (6).
وبما أن العم يرث في حالة أنوثة الخنثى دون حالة ذكورته فلم يُعط شيئاً.
ثم جمع المأخوذ من الجامعة فكان (14) ووقف الباقي وهو (4) إلى البيان أو الصالح.
فإن بان الخنثى ذكراً كان موقوف له.
وإن بان الخنثى أنثى: فللعم ثلاثة وللبنت واحد ولا شيء للأم من الموقوف، حيث أنها أخذت نصيبها كاملاً.
مثال التوافق بين المسألتين:
توفيت امرأة عن زوج وأم وولد لأبوين خنثى.
وهذه صورتها:
التوضيح:
المسألة الأولى: باعتبارالخنثى ذكراً أصلها من ستة:
للزوج النصف فرضاً وهو ثلاثة (3).
وللأم الثلث وهو اثنان (2).
وللخنثى باعتباره ذكراً الباقي وهو واحد (1).
والمسألة الثانية: باعتبار أنوثة الخنثى أصلها من ستة كالأولى وعالت إلى ثمانية، ومن هذا العدد صحت المسالة:
للزوج النصف ثلاثة من ثمانية.
وللأم الثلث اثنان من ثمانية.
وللخنثى باعتباره أنثى النصف ثلاثة.
ثم نظرنا بين المسألتين بالنسب (1) الأربع فوجدنا بينهما تواقفاً بالنصف، فضربنا وفق إحداهما في الأخرى.
أي: 3 × 8 أو 4 × 6 = 24 وهي الجامعة للمسألتين.
ثم قسمنا الجامعة على كل من المسألتين، والخارج من القسمة هو جزء سهم المسألة رقمنا كل منهما فوق مسألته:
المسألة الأولى: 24 ÷ 6 = 4 جزء سهم المسألة الأولى.
المسألة الثانية: 24 ÷ 8 = 3 جزء سهم المسألة الثاني.
ولمعرفة نصيب ما لكل واحد من المسألتين ليعطى الأقل عملنا الآتي:
ضربنا نصيب كل واحد من المسألتين في جزء سهم المسألة وقارنا بين حاصل الضربين وأعطيناه أقل العددين:
(1) النظر في استخراج الجامعة هنا يكون بين المسألتين بالنسب الأربع وفي المناسخة النظر يكون بين مسألة الميت الثاني وسهامه من الأولى بنظرين وهي: التوافق والتباين؛ فتنبه للفارق.
فالزوج: له من المسألة الأولى باعتبار ذكورة الخنثى 3 × 4 = 12.
وله من المسألة الثانية باعتبار أنوثة الخنثى 3 × 3 = 9.
فأعطي الأقل وهو (9) ورقم مقابل اسمه من عمود الجامعة.
والأم: لها من المسألة الأولى باعتبار ذكورة الخنثى 2 × 4 = 8.
ولها من المسألة الثانية باعتبار أنوثة الخنثى 2 × 3 = 6.
فأعطيت الأقل وهو (6) ورقمت مقابل اسمها من عمود الجامعة.
والخنثى: له من المسألة الأولى باعتباره ذكراً
…
1 × 4 = 4.
وله من المسألة الثانية باعتباره أنثى 3 × 3 = 9.
فأعطي أقل النصيبين وهو (4) ورقم مقابل اسمه من عمود الجامعة.
ثم جمع المأخوذ من الجامعة فكان (19) والموقوف من الجامعة (5) إلى البيان أو الصلح.
فإن بان الخنثى ذكراً أجريت مسألة الذكورة:
فيعطي الزوج من الموقوف (3).
وتعطى الأم (2).
ولا شيء للخنثى لأنه قد استوفى حقه.
وإن بان الخنثى أنثى أجريت مسألة الأنوثة فيعطي جميع الموقوف.
مثال التباين بين المسألتين:
توفي شخص عن ابن وولد خنثى.
وهذه صورتها:
التوضيح:
المسألة الأولى: باعتبار الخنثى ذكراً أصلها من (2):
للابن واحد (1).
وللولد الخثنى واحد (1).
المسألة الثانية: باعتبار أنوثة الخنثى أصلها من ثلاثة (3).
للابن الواضح (2).
وللخنثى باعتباره أنثى (1).
وبالنظر بين المسألتين بالنسب الأربع وجدنا بينهما تبايناً.
فضربنا عدد إحدى المسألتين في الأخرى:
3 × 2 أو 2 × 3 = 6 وهذا الناتج هو الجامعة للمسألتين.
ثم قسمنا الجامعة على كل مسألة من المسألتين والخارج من القسمة هو جزء سهم المسألة رقمنا كل منهما فوق مسألته:
المسألة الأولى: 6 ÷ 2 = 3 جزء سهم المسألة الأولى.
المسألة الثانية: 6 ÷ 3 = 2 جزء سهم المسألة الثانية.
ولمعرفة نصيب ما لكل واحد من المسألتين ليُعطى الأقل عملنا الآتي:
ضربنا نصيب كل واحد من المسألتين في جزء سهم المسألة وقارنا بين حاصل الضربين وأعطيناه أقل العددين:
فالابن: له من المسألة الأولى باعتبار ذكورة الخنثى
…
1 × 3 = 3.
وله من المسألة الثانية باعتبارأنوثة الخنثى
…
2 × 2 = 4.
فأعطي الأقل وهو (3) ورقم مقابل اسمه.
والخنثى: له من المسألة الأولى باعتباره ذكراً 1 × 3 = 3.
وله من المسألة الثانية باعتباره أنثى 1 × 2 = 2.
فأعطي الأقل وهو (2) ورقم مقابل اسمه.
ثم جمع المأخوذ من الجامعة فكان (5) والموقوف من الجامعة واحد (1)
…
إلى البيان أو الصلح.
فإن بان الخنثى ذكراً أجريت مسألة الذكورة فيعطي الباقي للخنثى المشكل، ولا يعطي الابن الواضح شيئاً لكونه استوفى حقه قبل.
وإن بان الخنثى أنثى أجريت مسألة الأنوثة فيعطى الباقي للابن الواضح .. والله أعلم.